

Все, что может стать платформой – станет платформой. Это настолько невероятно убедительно: «платформенные» компании растут быстрее, учатся быстрее, быстрее адаптируются и так далее. Если вы не сделаете платформу, ктото другой вас опередит.

Устаревшие институты должны понять, что у них действительно мало времени, чтобы принять этот путь. Потому что если они не делают этого, кто-то другой сделает это в их секторе экономики. Они могут начинать пилотные проекты и эксперименты самостоятельно, они могут говорить о своих проблемах и звать «конкурентов» попробовать посотрудничать с ними таким образом

Робин Чейз - Основатель самой большой в мире каршеринговой компании Zipcar

Проблемы с транзакциями в цепочке поставок

Неэффективность

Один контракт дублируется каждым участником цепочки поставок. Время, затрачиваемое каждым участником на регистрацию и сверку транзакций, замедляет движение капитала и учет прибыли на протяжении всей цепочки поставок.

Высокая стоимость

Дублирование действий и потребность в проверке транзакций увеличивают расходы. Привлечение посредников при улаживании спорных ситуаций еще больше увеличивает расходы на взаимодействие и дополнительно задерживает процесс сверки для других участников сети.

Уязвимость

Участники настолько тесно связаны друг с другом, что любое нарушение в системе одного из участников может сказаться на всех остальных участниках сети.

Возможные инциденты включают в себя мошенничество, кибератаки и обычные ошибки. Они подрывают доверие, делают невозможным автоматическую верификацию и идентификацию активов.

Особенностью **цифровой экономики** является то, что основной товар **ЦЭ** – это информация. Отсюда следует, что **ЦЭ** существует и функционирует согласно законам информационного обмена

Ценность информации – разность между вероятностью достижения цели до и после получения информации.

$$V = \frac{P - p}{1 - p}$$

- 1. $V = V_{max}$ ценность информации не меняется со временем;
- 2. $V = V_{max}(1 e^{-\alpha t})$ ценность информации со временем возрастает;
- 3. $V = V_{max}/e^{\beta t}$ ценность информации со временем убывает;
- 4. $V = V_{max}(1 e^{-\alpha t})/e^{\beta t}$ ценность информации сначала возрастает, а затем убывает (при $\alpha > \beta$)

Теория информации

Генерация информации:

Данные (D) – это варианты выбора. Информация (I) – это выбранный вариант из массива данных.

$$D \rightarrow I$$

Количество информации, по Шенону (при генерации):

$$I = -\sum_{i=1}^{N} p_i \cdot \log_2 p_i$$

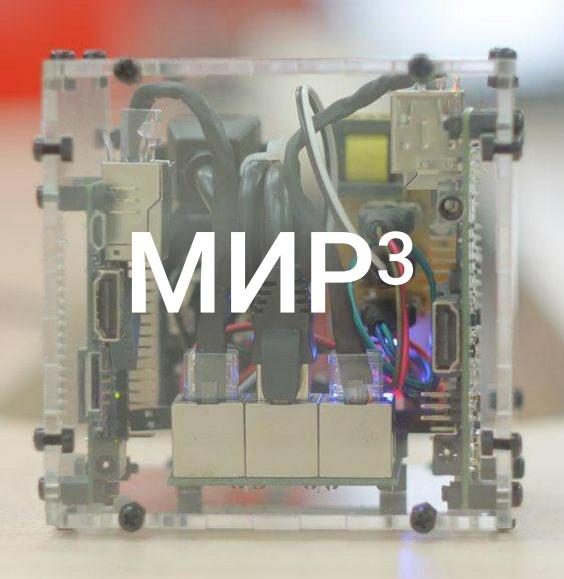
где n – количество вариантов; p_i – вероятность i-го варианта;

$$i = 1, 2, ... n$$
.

Если варианты равновероятны, то есть $p_i = 1/n$, $I = \log_2 n$

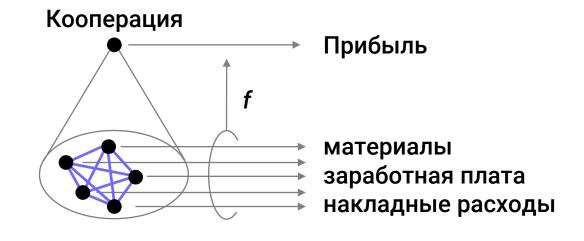
Приступите к планированию перехода на кооперативные сетевые структуры уже сейчас

Одними из первых внедрите новую технологию, сделав следующее:


- Определите самые очевидные сценарии использования
- Определите те точки, в которых особенности блокчейна могут дать немедленный результат
- Используйте дизайнерское мышление, чтобы упростить работу пользователей и создать пробные версии

Инициируйте коллективное обсуждение, чтобы выработать единые стандарты:

- Изучите роль кооперативных сетевых структур и возможные способы перераспределения фондов. Решите, какую роль готова играть ваша команда в формировании и регулировании более обширных деловых сетей
- Примите блокчейн в качестве новой среды ведения бизнеса, а сотрудничество в качестве оптимального способа работы, а затем решите, с кем вы хотите сотрудничать при создании оптимальной деловой сети


Оцените перспективность направлений бизнеса на основе ясных моделей:

- Найдите новые источники получения кооперативных выгод вместо бизнес-моделей, которые перестали работать с появлением блокчейна, например используйте ценообразование в зависимости от фактического объема потребления и микроплатежи
- Изучите, как новые услуги и приложения на основе блокчейна могут заменить, дополнить или расширить возможности имеющихся моделей получения выгод
- Проанализируйте, как блокчейн может положительно сказаться на других технологиях, таких как анализ больших данных, интернет вещей и облачные вычисления

Гиперсети обобщают понятия сетей и гиперграфов и состоят из геометрических структур, известных как реляционные симплексы или гиперсимплексы.

Основание гиперсимплекса содержит множество элементов одного уровня, а его вершина образуется описанием их отношений и приобретает интегральные свойства, делающие ее элементом сети более высокого уровня.

*Гиперсети это естественное расширение графов, гиперграфов и сетей

Технологии токенизации

Odoo IPFS Cluster МИР Kubernetes

- Кластеры экономических сетевых структур на базе одноплатных вычислительных устройств
- Платформа сборки субъектов развития цифровой экономики
- Распределенные вычисления

Рост выручки Моделирование выручки в Рост лояльности клиентов через самообслуживание привязке к тарифам Управление Сегментация Защита Рост точности Рост доступности спросом клиентов данных дохода данных Стратегический Тактический Превентивные методы Аналитика Валидация кооперативной выгоды режимов данных Телемеханика **Аналитика** Совершенствование производства управления отклонениями Телеметрия Опыт совместных Эффект от интеграции проектов Снижение затрат

Основные партнеры

Основные процессы

Предлагаемая ценность

Технологии отношений

Целевые группы

Кооперативные сетевые структуры Консалтинг Конфигурирации Модели Тотальная токенизация Репутационные, антропные активы Инициаторы изменений, социальные шапероны

Основные ресурсы

Экономические субъекты, цифровые активы

Каналы распределения

Events, Roadshow

Структура затрат

Социальная концессия (антагонизм коммерческой концессии)

Потоки доходов

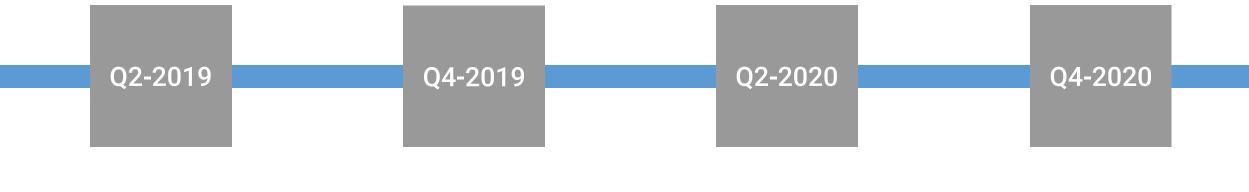
Gateway's (шлюзы ассетов)
Оператор Обмена Цифровых Активов
(экономическая система)

Ценообразование

$\Sigma = (K\kappa + \Pi p + 3o + 3n + Hn + Mr + HP + Чn)k$

- **Кк** Компоненты кластера // 20% Материалы.
- Πp Расходы неучтенные // 5% Прочие расходные материалы.
- 30 Затраты на оборудование // 5% Затраты на содержание, ремонт и обновление оборудования.
- **Зп** Заработная плата // 10% Зарплата участников.
- **Нл** Налоги // 50% Фонд Безусловного Базового Дохода.
- *МГ* Маркетинг // 5% Затраты на рекламу и прочие способы привлечения клиентов.
- *Hp* Изменение внешних условий // 2% Непредвиденные расходы.
- **Чп** Прибыль // 5% Чистая прибыль концессии участников.
- $oldsymbol{k}$ Надстройка стоимости // коэффициент горизонта неопределенности

Иститут Цифровой Экономики им. Глушкова В.М.


Ярослав Логинов

Роман Иноземцев

Григорий Слынько

Оптимизация кубсат узлов

НИОКР кооперативных сетевых структур Переход на конвергентный механизм взаимодействия

Пределы предсказуемости динамики субъектов ЦЭ

Экосистема гиперсети

ПРИРОДА

Для сохранения природного капитала, управления экологическими активами и обязательствами

ЧЕЛОВЕК

Для развития социоантропосферы, определяющего вектор развития собственно человека и человечества

ОБЩЕСТВО

Для поиска универсальных принципов и практических методов коэволюции сложных социальных систем

ТЕХНОЛОГИИ

Для социальной рефлексии над конвергентными технологиями на социальную сферу и природу человека

Иноземцев Роман Олегович

Заместитель руководителя Департамента Цифровых платформ

АНО Институт Развития Цифровой Экономики 105082, Россия, г. Москва, Спартаковская пл. д.14, корп. 3, оф. 3203

github.com/mir-one dao@mir.one

+7(911)299-80-02

